6: 2016-06-01 (水) 10:16:41 osinko  |
現: 2016-06-03 (金) 18:47:14 osinko  |
| #jsmath | | #jsmath |
| | | |
- | | |
- | ***忘備録メモ [#n72fa6d7] | |
- | | |
- | シグマの計算 | |
- | | |
- | \(\displaystyle E\quad =\quad \sum _{ k=1 }^{ \infty }{ pk{ \left( 1-p \right) }^{ k } } \quad =\quad p\sum _{ k=1 }^{ \infty }{ k{ \left( 1-p \right) }^{ k } } \\ \\ 数列で考える\\ \\ E=\left\{ p(1-p)+2p{ (1-p) }^{ 2 }+3p{ (1-p) }^{ 3 }+\cdots \right\} \\ \\ E(1-p)=\left\{ p{ (1-p) }^{ 2 }+2p{ (1-p) }^{ 3 }+3p{ (1-p) }^{ 4 }+\cdots \right\} \\ \\ 引き算して数列を整理。kを消す\\ \\ E-E(1-p)=E-E+pE=pE\\ pE=\left\{ p(1-p)+p{ (1-p) }^{ 2 }+p{ (1-p) }^{ 3 }+\cdots \right\} \quad =\quad p\sum _{ k=1 }^{ \infty }{ { \left( 1-p \right) }^{ k } } \\ pE\quad =\quad p\sum _{ k=1 }^{ \infty }{ { \left( 1-p \right) }^{ k } } \quad =\quad p\sum _{ k=1 }^{ \infty }{ { \left( 1-p \right) }\cdot { \left( 1-p \right) }^{ k-1 } } \\ \\ 等比数列の公式\cdots \quad \sum _{ k=1 }^{ n }{ { a }_{ 1 }{ r }^{ n-1 } } =\frac { { a }_{ 1 }\left( 1-{ r }^{ n } \right) }{ 1-r } より\\ \\ E\quad =\quad \sum _{ k=1 }^{ \infty }{ { \left( 1-p \right) }\cdot { \left( 1-p \right) }^{ k-1 } } \quad =\quad \frac { \left( 1-p \right) \left( 1-\overbrace { \left( 1-p \right) ^{ n } }^{ 0\le (1-p)\le 1より無限級数の収束で0になる } \right) }{ 1-(1-p) } \quad =\quad \frac { \left( 1-p \right) \left( 1-0 \right) }{ 1-1+p } \quad =\quad \frac { 1-p }{ p } \) | |
- | | |
- | 順番 | |
- | ①数列や樹形図より期待値の式を作る | |
- | ②期待値のシグマを解く | |
- | | |
- | -等比をずらして引き算するとシグマのkが消せる | |
- | -kを消した数列から、もう一度シグマを組み、それをうまく変形して等比数列の公式の型に誘導し解く | |
- | -等比数列公式内の等比rが0以上1以下の時、無限級数の収束。極限の0収束が使える。確率の計算では、ほぼこのテクニックが使える | |
- | | |
- | 他例: | |
- | \(E=\sum _{ k=1 }^{ \infty }{ k{ \left( \frac { 1 }{ 2 } \right) }^{ k } } \\ E=\left\{ \frac { 1 }{ 2 } +{ 2\left( \frac { 1 }{ 2 } \right) }^{ 2 }+3{ \left( \frac { 1 }{ 2 } \right) }^{ 3 }+4{ \left( \frac { 1 }{ 2 } \right) }^{ 4 }\cdots \right\} \\ E{ \left( \frac { 1 }{ 2 } \right) }=\left\{ { \left( \frac { 1 }{ 2 } \right) }^{ 2 }+{ 2\left( \frac { 1 }{ 2 } \right) }^{ 3 }+{ 3\left( \frac { 1 }{ 2 } \right) }^{ 4 }+4{ \left( \frac { 1 }{ 2 } \right) }^{ 5 }+\cdots \right\} \\ E-E{ \left( \frac { 1 }{ 2 } \right) }=\left\{ { \left( \frac { 1 }{ 2 } \right) }^{ 2 }+{ \left( \frac { 1 }{ 2 } \right) }^{ 3 }+{ \left( \frac { 1 }{ 2 } \right) }^{ 4 }+\cdots \right\} \\ E-E{ \left( \frac { 1 }{ 2 } \right) }=E\left( 1-\frac { 1 }{ 2 } \right) =\sum _{ k=1 }^{ \infty }{ { \left( \frac { 1 }{ 2 } \right) }^{ k } } =\sum _{ k=1 }^{ \infty }{ { \left( \frac { 1 }{ 2 } \right) }{ \left( \frac { 1 }{ 2 } \right) }^{ k-1 } } =\frac { \frac { 1 }{ 2 } \left( 1-{ \left( \frac { 1 }{ 2 } \right) }^{ k } \right) }{ 1-{ \left( \frac { 1 }{ 2 } \right) } } =\frac { \frac { 1 }{ 2 } \left( 1-0 \right) }{ \frac { 1 }{ 2 } } =1\\ E\left( \frac { 1 }{ 2 } \right) =1\quad \Leftrightarrow \quad E=2 \) | |
| | | |
| **忘備録メモ [#nc53bf1f] | | **忘備録メモ [#nc53bf1f] |