メモ1 のバックアップの現在との差分(No.15)

Unity学習帳2冊目メモ1 のバックアップの現在との差分(No.15)
« Prev  Next »
15: 2016-08-30 (火) 16:23:59 osinko ソース 現: 2016-09-11 (日) 01:22:39 osinko ソース
Line 1: Line 1:
TITLE:memo1 TITLE:memo1
#jsmath #jsmath
 +
 +**P63~ [#t9ddf252]
**P58~61の理解(対称群の理解など) [#i79c06e1] **P58~61の理解(対称群の理解など) [#i79c06e1]
Line 99: Line 101:
\({ x }_{ n+1 }>{ x }_{ n+1 }\quad \quad \quad 反射性NG\\ { x }_{ n+1 }>{ x }_{ n+2 }\quad \rightarrow \quad { x }_{ n+2 }>{ x }_{ n+1 }\quad \quad \quad 対称性NG\\ { x }_{ n+1 }>{ x }_{ n+2 }\quad \wedge \quad { x }_{ n+2 }>{ x }_{ n+3 }\quad \rightarrow \quad { x }_{ n+1 }>{ x }_{ n+3 }\quad \quad \quad 推移性OK\) \({ x }_{ n+1 }>{ x }_{ n+1 }\quad \quad \quad 反射性NG\\ { x }_{ n+1 }>{ x }_{ n+2 }\quad \rightarrow \quad { x }_{ n+2 }>{ x }_{ n+1 }\quad \quad \quad 対称性NG\\ { x }_{ n+1 }>{ x }_{ n+2 }\quad \wedge \quad { x }_{ n+2 }>{ x }_{ n+3 }\quad \rightarrow \quad { x }_{ n+1 }>{ x }_{ n+3 }\quad \quad \quad 推移性OK\)
-従って同値性は持たず推移性を持つ事になる。この推移性はεδ論法によって確保されていると考えられる。\(\forall \varepsilon >0\quad (\quad \exists \delta >0\quad (\quad \forall n\in \mathbb{N}\quad (\quad n>\delta \quad \Rightarrow \quad \left| { a }_{ n }-\alpha \right|  <\varepsilon \quad ))))\quad\)+従って同値性は持たず推移性を持つ事になる 
 +値が回転ループすることもないし、ある具体的な値に固定化(同値化)することもない(つまり同値でなく近似値になる)。演算の順番も反射性、対称性が無いので入れ替えれない 
 +この推移性はεδ論法によって確保されていると考えられる。\(\forall \varepsilon >0\quad (\quad \exists \delta >0\quad (\quad \forall n\in \mathbb{N}\quad (\quad n>\delta \quad \Rightarrow \quad \left| { a }_{ n }-\alpha \right|  <\varepsilon \quad ))))\quad\)
また、恒等や反転にあたる\(\iota \)(イオタ)や\(\tau \)(タウ)、つまり単位元、逆元のような存在は見つけられない また、恒等や反転にあたる\(\iota \)(イオタ)や\(\tau \)(タウ)、つまり単位元、逆元のような存在は見つけられない
« Prev  Next »


トップ   差分 バックアップ 複製 名前変更 リロード   ページ新規作成 全ページ一覧 単語検索 最新ページの一覧   ヘルプ   最新ページのRSS 1.0 最新ページのRSS 2.0 最新ページのRSS Atom