高校数学​/等差数列、等比数列、総和(シグマ) のバックアップの現在との差分(No.9)

Unity学習帳2冊目高校数学 / 等差数列、等比数列、総和(シグマ) のバックアップの現在との差分(No.9)
« Prev  Next »
9: 2016-06-03 (金) 21:28:14 osinko ソース 現: 2016-06-09 (木) 17:35:22 osinko ソース
Line 6: Line 6:
シグマは森と木の関係を見るような数学記号。「数列という無数の集合」=全体(森)と「それを数学的帰納で総べる一般項」=ディテール(木)との関係を一度に取り扱える。これは積分や確率計算などで多用される非常に重要な計算技術となっている シグマは森と木の関係を見るような数学記号。「数列という無数の集合」=全体(森)と「それを数学的帰納で総べる一般項」=ディテール(木)との関係を一度に取り扱える。これは積分や確率計算などで多用される非常に重要な計算技術となっている
-**等差数列 [#n19fddd7]+**等差数列(arithmetic progression) [#n19fddd7]
-&font(120%){\({ a }_{ n }={ a }_{1}+\left( n-1 \right) d\quad \quad \quad \quad ({ a }_{1}:初項\quad d:公差\quad n:項数)\)&br;};+\({ a }_{ n }={ a }_{1}+\left( n-1 \right) d\quad \quad \quad \quad ({ a }_{1}:初項\quad d:公差\quad n:項数)\)
使用例: 使用例:
\({ a }_{ 1 }=3,d=5\\ { a }_{ n }=\left\{ 3,8,13,18,23,\cdots 3+(n-1)5 \right\} \) \({ a }_{ 1 }=3,d=5\\ { a }_{ n }=\left\{ 3,8,13,18,23,\cdots 3+(n-1)5 \right\} \)
-***等差数列の総和 [#j14a967d]+***等差数列の総和(等差級数 arithmetic series) [#j14a967d] 
 +&font(Red){一定の法則にしたがって変化する数を一定の順に並べた数列の和の事を「級数」と呼ぶ。};無限に並べた和を「無限級数」と呼ぶ。「等差数列の総和」は「等差級数」とも呼べる
-等差数列の総和をシグマ記号で表すと以下になる。最右辺は一般化された式となっている。総和は\(Sn\) (おそらくSumNumberの略)で表される事が多い+等差数列の総和をシグマ記号で表すと以下になる。最右辺は一般化された式(公式)となっている。総和は\(Sn\) (おそらくSumNumberの略)で表される事が多い
\(\displaystyle Sn\quad =\quad \sum _{ k=1 }^{ n }{ { a }_{ 1 }+\left( k-1 \right) d } \quad =\quad \frac { n }{ 2 } \left( 2{ a }_{ 1 }+(n-1)d \right)  \) \(\displaystyle Sn\quad =\quad \sum _{ k=1 }^{ n }{ { a }_{ 1 }+\left( k-1 \right) d } \quad =\quad \frac { n }{ 2 } \left( 2{ a }_{ 1 }+(n-1)d \right)  \)
Line 22: Line 23:
\(\displaystyle { a }_{ 1 }=3,d=5,n=8\\ Sn=3+8+13+18+23+28+33+38=164\\ もしくは\\ Sn=\frac { 8 }{ 2 } \left( 2\times 3+(8-1)\times 5 \right) =164\) \(\displaystyle { a }_{ 1 }=3,d=5,n=8\\ Sn=3+8+13+18+23+28+33+38=164\\ もしくは\\ Sn=\frac { 8 }{ 2 } \left( 2\times 3+(8-1)\times 5 \right) =164\)
-***等差数列の総和の一般項の導出 [#e7fb8512] +***等差数列の総和の公式の導出 [#e7fb8512]
- +
-この一般式の導出方法を以下に述べる。これを知っておくと「等差数列のシグマの計算の仕組み」を知ることになる +
-//確率や積分の計算でこれを理解しているのと理解していないのでは将来必ず差が出てくる+
まず総和内の数列を確認する まず総和内の数列を確認する
Line 43: Line 41:
\( 両辺を2で割って、Sn=\frac { n }{ 2 } \left( { 2a }_{ 1 }+(n-1)d \right) \quad となる\) \( 両辺を2で割って、Sn=\frac { n }{ 2 } \left( { 2a }_{ 1 }+(n-1)d \right) \quad となる\)
-**等比数列 [#ubc92857]+**等比数列(geometric progression) [#ubc92857] 
 +等比数列は幾何数列と呼ばれることもある。英語では「geometric progression」 
 +等比数列の総和は確率や積分、極限の計算等で非常に多く利用される。古代ギリシャの幾何学の出発点は、おそらくこの幾何数列の研究から端を発していると個人的に感じる。
&font(120%){\({ a }_{ n }={ a }_{ 1 }{ r }^{ n-1 }\quad \quad \quad \quad ({ a }_{ 1 }:初項\quad r:公比\quad n:項数)\)}; &font(120%){\({ a }_{ n }={ a }_{ 1 }{ r }^{ n-1 }\quad \quad \quad \quad ({ a }_{ 1 }:初項\quad r:公比\quad n:項数)\)};
使用例: 使用例:
-\({ a }_{ n }=\left\{ 3,15,75,375,1875,\cdots 3\cdot 5^{ n-1 } \right\}  \)+\({ a }_{ 1 }=3,r=5,n=\left\{ 1,2,3,4\cdots  \right\} \\ { a }_{ n }=\left\{ 3,15,75,375,1875,\cdots 3\cdot 5^{ n-1 } \right\}  \)
-\(n\)を\(\infty \)にすると極限が計算できる点は重要+***等比数列と対数との関係 [#d6eac638] 
 + 
 +等&font(Red){比};数列の一般項の対数をとると 
 +\(\log { { a }_{ n } } =\log { { a }_{ 1 } } +\left( n-1 \right) \log { r } \) 
 +となる 
 + 
 +例: 
 +\({ a }_{ n }=3\cdot { 5 }^{ n-1 }\\ { a }_{ 5 }=1875\\ \log _{ 10 }{ 1875 } =\log _{ 10 }{ 3 } +\left( 5-1 \right) \log _{ 10 }{ 5 } \quad \Leftrightarrow \quad { 10 }^{ 3.273001272 }\simeq { 10 }^{ 0.477121254 }\times { 10 }^{ 4\times 0.698970004 }\) 
 + 
 +数列 \( \log { { a }_{ n } } \) は初項 \(\log { { a }_{ 1 } } \)、公差 \(\log { r } \)の等&font(Red){差};数列になる 
 + 
 +***等比数列の総和(等比級数、幾何級数 geometric series) [#t2f28d84] 
 +等比数列の総和は等比級数、幾何級数とも呼ばれる。等比数列の総和をシグマ記号で表すと以下になる。最右辺は一般化された式となっている。なお、\(n\)を\(\infty \)にすると極限が計算できる点は非常に重要で、その場合、無限級数と呼ばれる 
 + 
 +\(\displaystyle Sn\quad =\quad \sum _{ k=1 }^{ n }{ { a } } { r }^{ k-1 }\quad =\quad \frac { { a }\left( 1-{ r }^{ n } \right)  }{ 1-r }  \) 
 + 
 +\(\displaystyle Sn\quad =\quad \sum _{ k=1 }^{ \infty  }{ { a } } { r }^{ k-1 }\quad =\quad \lim _{ n\rightarrow \infty  }{ \frac { { a }\left( 1-{ r }^{ n } \right)  }{ 1-r }  }  \) 
 + 
 +この公式の\(a\)は初項と考えない方が良い。むしろ等比級数内の等比数列全体に適用される係数だと考えた方が良い。シグマの中の要素をずらす事で一般式も変化する。たとえば以下のように等比の要素を一要素、外に出して係数に含め一つずらす等ができる。これにより式を変形させたりする 
 + 
 +\(\displaystyle Sn\quad =\quad \sum _{ k=1 }^{ n }{ { a } } { r }^{ k }\quad =\quad \sum _{ k=1 }^{ n }{ { a }r\cdot  } { r }^{ k-1 }\quad =\quad \frac { { a }r\left( 1-{ r }^{ n } \right)  }{ 1-r } \quad =\quad \frac { { a }\left( r-{ r }^{ n+1 } \right)  }{ 1-r } \) 
 + 
 +<より一般的な公式> 
 +\(k=m\)で\(k\ge 1\)である場合は以下になる 
 + 
 +&font(Red){\(\displaystyle \sum _{ k=m }^{ n }{ { a }r^{ k } } =\frac { { a }\left( { r }^{ m }-{ r }^{ n+1 } \right)  }{ 1-r }  \)}; 
 + 
 +使用例: 
 + 
 +等比級数の内容を確認する 
 +\(Sn=3+15+75+375+1875+9375+46875+234375=292968\\ \quad \quad =3\cdot { 5 }^{ 0 }+3\cdot { 5 }^{ 1 }+3\cdot { 5 }^{ 2 }+3\cdot { 5 }^{ 3 }+3\cdot { 5 }^{ 4 }+3\cdot { 5 }^{ 5 }+3\cdot { 5 }^{ 6 }+3\cdot { 5 }^{ 7 }=292968\) 
 + 
 +\({ a }_{ 1 }=3,r=5,n=8\) 
 +この等比級数の項の数は8個で初項は0乗から始まっている。\(k=\left\{ 1,2,3,\cdots 8 \right\} \)とカウントアップされる場合、シグマ内部の数式は\(0\)乗の為に\(k-1\)される必要がある 
 +よってシグマの式は 
 + 
 +\(\displaystyle Sn=\sum _{ k=1 }^{ n }{ { a }r^{ k-1 } } =\frac { { a }\left( 1-{ r }^{ n } \right)  }{ 1-r }  \) 
 + 
 +これに各値をあてはめると以下になる 
 + 
 +\(\displaystyle Sn=\sum _{ k=1 }^{ 8 }{ 3\cdot { 5 }^{ k-1 } } =\frac { 3\times (1-{ 5 }^{ 8 }) }{ 1-5 } =292968\) 
 + 
 + 
 +使用例2: 
 +等比級数とシグマを考える時、初項や等比、次数との関係をよく考えながら式を進める必要がある 
 + 
 +\(Sn=-2\pi +4{ \pi  }^{ 2 }-8{ \pi  }^{ 3 }={ \left( -2\pi  \right)  }^{ 1 }+{ \left( -2\pi  \right)  }^{ 2 }+{ \left( -2\pi  \right)  }^{ 3 }\simeq -214.8549...\) 
 + 
 +\({ a }=1,r=\left( -2\pi  \right) ,n=3\) 
 +この等比級数の項の数は3個で初項は\(1\)乗から始まっている。\(k=\left\{ 1,2,3 \right\}\)とカウントアップされるのでシグマ内部の数式の\(k\)に対して操作は必要ない 
 +よってシグマの式は 
 + 
 +\(\displaystyle \sum _{ k=m }^{ n }{ { a }r^{ k } } =\frac { { a }\left( { r }^{ m }-{ r }^{ n+1 } \right)  }{ 1-r }\) 
 + 
 +これに各値をあてはめると以下になる 
 + 
 +\(\displaystyle \sum _{ k=1 }^{ 3 }{ \left( -2{ \pi  } \right) ^{ k } } \quad =\quad \frac { 1\cdot ({ \left( -2{ \pi  } \right)  }^{ 1 }-{ \left( -2{ \pi  } \right)  }^{ 3+1 }) }{ 1-{ \left( -2{ \pi  } \right)  } } \quad =\quad \frac { -2{ \pi  }-{ 16{ \pi  } }^{ 4 } }{ 1+2{ \pi  } } \quad \simeq \quad -214.8549...\) 
 + 
 +<補足> 
 +例えば \({ -5 }^{ 0 }=-1\) となるが \( { \left( -5 \right)  }^{ 0 }=1 \)  になることに注意 
 + 
 +***等比数列の総和の公式の導出 [#z4ff4d5d] 
 +非常に重要な考え方の一つ 
 +公式の導出。最初に幾何級数を書く 
 + 
 +\(\displaystyle \sum _{ k=1 }^{ n }{ { a }{ r }^{ k-1 } } ={ a }{ r }^{ 0 }+{ a }{ r }^{ 1 }+{ a }{ r }^{ 2 }+\cdots +{ a }{ r }^{ n-1 }\) 
 + 
 +このシグマの式に対して「\(1-r\)」を掛ける事で、シンプルになる右辺の式を見つける事が出来る 
 + 
 +\(\displaystyle \begin{eqnarray} (1-r)\sum _{ k=1 }^{ n }{  a { r }^{ k-1 } }  & = & \left( 1-r \right) \left( { a }{ r }^{ 0 }+{ a }{ r }^{ 1 }+{ a }{ r }^{ 2 }+\cdots +{ a }{ r }^{ n-1 } \right)  \\ \quad  & = & { a }{ r }^{ 0 }+{ a }{ r }^{ 1 }+{ a }{ r }^{ 2 }+\cdots +{ a }{ r }^{ n-1 }-{ a }{ r }^{ 1 }-{ a }{ r }^{ 2 }-{ a }{ r }^{ 3 }-\cdots -{ a }{ r }^{ n } \\ \quad  & = & { a }{ r }^{ 0 }-{ a }{ r }^{ n } \\ \quad  & = & { a }-{ { a }r }^{ n } \\ \quad  & = & { a }\left( 1-{ r }^{ n } \right)  \end{eqnarray}\) 
 + 
 +従ってr≠1の場合、幾何級数は以下の公式が利用できる 
 + 
 +\(\displaystyle \sum _{ k=1 }^{ n }{ { a }{ r }^{ k-1 } } =\frac { { a }\left( 1-{ r }^{ n } \right)  }{ 1-r } \) 
 + 
 +***無限級数(infinite geometric series) [#e78f345c] 
 + 
 +\(n\)に対して極限を利用すると収束や拡散、振動などが発生する。特に収束は確率計算や積分で重要。以下に利用例を併記する 
 + 
 +<以下工事中TODO>
***忘備録メモ [#n72fa6d7] ***忘備録メモ [#n72fa6d7]
Line 69: Line 148:
\(E=\sum _{ k=1 }^{ \infty  }{ k{ \left( \frac { 1 }{ 2 }  \right)  }^{ k } } \\ E=\left\{ \frac { 1 }{ 2 } +{ 2\left( \frac { 1 }{ 2 }  \right)  }^{ 2 }+3{ \left( \frac { 1 }{ 2 }  \right)  }^{ 3 }+4{ \left( \frac { 1 }{ 2 }  \right)  }^{ 4 }\cdots  \right\} \\ E{ \left( \frac { 1 }{ 2 }  \right)  }=\left\{ { \left( \frac { 1 }{ 2 }  \right)  }^{ 2 }+{ 2\left( \frac { 1 }{ 2 }  \right)  }^{ 3 }+{ 3\left( \frac { 1 }{ 2 }  \right)  }^{ 4 }+4{ \left( \frac { 1 }{ 2 }  \right)  }^{ 5 }+\cdots  \right\} \\ E-E{ \left( \frac { 1 }{ 2 }  \right)  }=\left\{ { \left( \frac { 1 }{ 2 }  \right)  }^{ 2 }+{ \left( \frac { 1 }{ 2 }  \right)  }^{ 3 }+{ \left( \frac { 1 }{ 2 }  \right)  }^{ 4 }+\cdots  \right\} \\ E-E{ \left( \frac { 1 }{ 2 }  \right)  }=E\left( 1-\frac { 1 }{ 2 }  \right) =\sum _{ k=1 }^{ \infty  }{ { \left( \frac { 1 }{ 2 }  \right)  }^{ k } } =\sum _{ k=1 }^{ \infty  }{ { \left( \frac { 1 }{ 2 }  \right)  }{ \left( \frac { 1 }{ 2 }  \right)  }^{ k-1 } } =\frac { \frac { 1 }{ 2 } \left( 1-{ \left( \frac { 1 }{ 2 }  \right)  }^{ k } \right)  }{ 1-{ \left( \frac { 1 }{ 2 }  \right)  } } =\frac { \frac { 1 }{ 2 } \left( 1-0 \right)  }{ \frac { 1 }{ 2 }  } =1\\ E\left( \frac { 1 }{ 2 }  \right) =1\quad \Leftrightarrow \quad E=2 \) \(E=\sum _{ k=1 }^{ \infty  }{ k{ \left( \frac { 1 }{ 2 }  \right)  }^{ k } } \\ E=\left\{ \frac { 1 }{ 2 } +{ 2\left( \frac { 1 }{ 2 }  \right)  }^{ 2 }+3{ \left( \frac { 1 }{ 2 }  \right)  }^{ 3 }+4{ \left( \frac { 1 }{ 2 }  \right)  }^{ 4 }\cdots  \right\} \\ E{ \left( \frac { 1 }{ 2 }  \right)  }=\left\{ { \left( \frac { 1 }{ 2 }  \right)  }^{ 2 }+{ 2\left( \frac { 1 }{ 2 }  \right)  }^{ 3 }+{ 3\left( \frac { 1 }{ 2 }  \right)  }^{ 4 }+4{ \left( \frac { 1 }{ 2 }  \right)  }^{ 5 }+\cdots  \right\} \\ E-E{ \left( \frac { 1 }{ 2 }  \right)  }=\left\{ { \left( \frac { 1 }{ 2 }  \right)  }^{ 2 }+{ \left( \frac { 1 }{ 2 }  \right)  }^{ 3 }+{ \left( \frac { 1 }{ 2 }  \right)  }^{ 4 }+\cdots  \right\} \\ E-E{ \left( \frac { 1 }{ 2 }  \right)  }=E\left( 1-\frac { 1 }{ 2 }  \right) =\sum _{ k=1 }^{ \infty  }{ { \left( \frac { 1 }{ 2 }  \right)  }^{ k } } =\sum _{ k=1 }^{ \infty  }{ { \left( \frac { 1 }{ 2 }  \right)  }{ \left( \frac { 1 }{ 2 }  \right)  }^{ k-1 } } =\frac { \frac { 1 }{ 2 } \left( 1-{ \left( \frac { 1 }{ 2 }  \right)  }^{ k } \right)  }{ 1-{ \left( \frac { 1 }{ 2 }  \right)  } } =\frac { \frac { 1 }{ 2 } \left( 1-0 \right)  }{ \frac { 1 }{ 2 }  } =1\\ E\left( \frac { 1 }{ 2 }  \right) =1\quad \Leftrightarrow \quad E=2 \)
 +**等比数列の総和 [#ac6625bb]
 +資料:虚数の情緒 P448~P449 ここでは別の解釈で同じ計算をやる
 +まず、P448の等比数列の総和\({K}_{n}\)を求めることを考える
 +\({ K }_{ n }=\left( 1+\frac { 1 }{ 4 } +\frac { 1 }{ { 4 }^{ 2 } } +\frac { 1 }{ { 4 }^{ 3 } } +\frac { 1 }{ { 4 }^{ 4 } } +\frac { 1 }{ { 4 }^{ 5 } } +\cdots +\frac { 1 }{ { 4 }^{ n } }  \right) \)
 +この数列を等比数列の式で表すと
 +\({ a }_{ n } = 1\cdot { \left( \frac { 1 }{ 4 }  \right)  }^{ n-1 }\)
 +これをシグマの式で表すと
 +\(\displaystyle \sum _{ k=1 }^{ n }{ { \left( \frac { 1 }{ 4 }  \right)  }^{ n-1 } } \)
 +となる
 +
 +等比数列の総和の公式は以下になる
 +\(\displaystyle { S }_{ n }=\sum _{ k=1 }^{ n }{ { a }_{ 1 }{ r }^{ k-1 } } =\frac { { a }_{ 1 }\left( { r }^{ n }-1 \right)  }{ { r }-1 } =\frac { { a }_{ 1 }\left( 1-{ r }^{ n } \right)  }{ 1-{ r } } \quad \quad \quad 等比数列の総和:{ S }_{ n }\quad (r≠1)\)
 +いきなり公式を使って計算しても良いがここでは、その構造と仕組みを確認しながら<例示は理解の試金石>であることを利用して計算の動きを追いかけてみる
 +
 +<TODO>
 +
 +
 +無限級数(等比数列の無限項の総和、つまり\(n\rightarrow \infty \))の場合、\(-1<r<1\) であるなら収束が発生して総和の式が変わる
 +
 +\(\displaystyle \lim _{ n\rightarrow \infty  }{ { S }_{ n }= } \lim _{ n\rightarrow \infty  }{ \sum _{ k=1 }^{ n }{ { a }_{ 1 }{ r }^{ k-1 } }  } =\sum _{ k=1 }^{ \infty  }{ { a }_{ 1 }{ r }^{ k-1 } } =\frac { { a }_{ 1 }\left( 1-0 \right)  }{ 1-{ r } } =\frac { { a }_{ 1 } }{ 1-{ r } } \quad \quad (-1<r<1) \)
 +
 +(補足:\( −1<r<1 \) の時、\(\displaystyle { \lim _{ n\rightarrow \infty  }{ { r }^{ n }= } 0 }\)の収束が発生する)
 +
 +**有理数を利用した関数の帰納的性質 [#z10c6636]
 +
 +資料:「虚数の情緒P448~P449」
 +
 +つまり、こういう事だと思う
 +
 +\(\displaystyle \sum _{ k=0 }^{ \infty  }{ { \left( \frac { 1 }{ 4 }  \right)  }^{ k } } \quad =\quad \left\{ 1+\frac { 1 }{ 4 } +\frac { 1 }{ { 4 }^{ 2 } } +\frac { 1 }{ { 4 }^{ 3 } } +\cdots +\frac { 1 }{ { 4 }^{ n } }  \right\} \quad =\quad 1+\frac { 1 }{ 3 } \quad =\quad \frac { 4 }{ 3 } \)
 +
 +\(\displaystyle \sum _{ k=1 }^{ \infty  }{ { \left( \frac { 1 }{ 4 }  \right)  }^{ k } } \quad =\quad \left\{ \frac { 1 }{ 4 } +\frac { 1 }{ { 4 }^{ 2 } } +\frac { 1 }{ { 4 }^{ 3 } } +\cdots +\frac { 1 }{ { 4 }^{ n } }  \right\} \quad =\quad \frac { 1 }{ 3 } \)
 +\(\displaystyle \sum _{ k=1 }^{ \infty  }{ { \left( \frac { 1 }{ 5 }  \right)  }^{ k } } \quad =\quad \left\{ \frac { 1 }{ 5 } +\frac { 1 }{ { 5 }^{ 2 } } +\frac { 1 }{ { 5 }^{ 3 } } +\cdots +\frac { 1 }{ { 5 }^{ n } }  \right\} \quad =\quad \frac { 1 }{ 4 } \)
 +\(\displaystyle \sum _{ k=1 }^{ \infty  }{ { \left( \frac { 1 }{ 6 }  \right)  }^{ k } } \quad =\quad \left\{ \frac { 1 }{ 6 } +\frac { 1 }{ { 6 }^{ 2 } } +\frac { 1 }{ 6^{ 3 } } +\cdots +\frac { 1 }{ { 6 }^{ n } }  \right\} \quad =\quad \frac { 1 }{ 5 } \)
 +\(\quad \cdots \)
 +\(\displaystyle \sum _{ k=1 }^{ \infty  }{ { \left( \frac { 1 }{ 1000 }  \right)  }^{ k } } \quad =\quad \left\{ \frac { 1 }{ 1000 } +\frac { 1 }{ { 1000 }^{ 2 } } +\frac { 1 }{ 1000^{ 3 } } +\cdots +\frac { 1 }{ { 1000 }^{ n } }  \right\} \quad =\quad \frac { 1 }{ 999 } \)
 +
 +これは実数が\(1\)とその他の小数の数字に分離できるという事を示唆している
 +
 +\(\displaystyle \sum _{ k=0 }^{ \infty  }{ { \left( \frac { 1 }{ n }  \right)  }^{ k } } =1+\frac { 1 }{ n-1 } \quad \quad \quad \quad \quad \sum _{ k=1 }^{ \infty  }{ { \left( \frac { 1 }{ n }  \right)  }^{ k } } =\frac { 1 }{ n-1 } \quad \)
 +
 +例えば、こんな感じになる
 +
 +\(\displaystyle 3\sum _{ k=0 }^{ \infty  }{ { \left( \frac { 1 }{ 10001 }  \right)  }^{ k } } =3.0003\)
 +
 +この帰納的性質は指数や対数の計算において面白い効果が期待できそうな可能性がある
 +資料:  [[初心者用 テイラー展開解説:http://www.ice.tohtech.ac.jp/~nakagawa/taylorexp/taylor1.htm]]
**等比数列の検証 [#b77fdcc5] **等比数列の検証 [#b77fdcc5]
Line 112: Line 238:
     int nn = 7;      int nn = 7;
     float particleSize = 0.3f;      float particleSize = 0.3f;
 +    
     ParticleSystem pe;      ParticleSystem pe;
     ParticleSystem.Particle[] point;      ParticleSystem.Particle[] point;
Line 121: Line 247:
     pe.startSpeed = 0;      pe.startSpeed = 0;
     pe.startLifetime = float.MaxValue; //寿命が有限なのでいつか消えます(無限寿命を指定する方法は仕様上無い?)      pe.startLifetime = float.MaxValue; //寿命が有限なのでいつか消えます(無限寿命を指定する方法は仕様上無い?)
 +    
     CreatePoint ();      CreatePoint ();
     }      }
Line 147: Line 273:
} }
}} }}
- 
-***等差数列の和 [#xfa9ea99] 
-#jsmath 
-&font(150%){\(\displaystyle{ S }_{ n }=\frac { n\left( { a }+l \right)  }{ 2 } \quad \quad \quad \quad \quad (n:総項数\quad { a }:初項\quad l:末項)\)&br;}; 
- 
-尚、末項の \(l\) を \({ a }_{ 1 }+\left( n-1 \right) d \) とした時、\(\displaystyle{ S }_{ n }=\frac { n\left( { a }_{ 1 }+{ a }_{ 1 }+\left( n-1 \right) d \right)  }{ 2 } \quad \rightarrow \quad { S }_{ n }=\frac { n }{ 2 } \left\{ 2{ a }_{ 1 }+\left( n-1 \right) d \right\} \) となる 
***等比数列の和 [#va36700c] ***等比数列の和 [#va36700c]
« Prev  Next »


トップ   差分 バックアップ 複製 名前変更 リロード   ページ新規作成 全ページ一覧 単語検索 最新ページの一覧   ヘルプ   最新ページのRSS 1.0 最新ページのRSS 2.0 最新ページのRSS Atom