微積分と物理​/実数の定義 のバックアップの現在との差分(No.16)

Unity学習帳2冊目微積分と物理 / 実数の定義 のバックアップの現在との差分(No.16)
« Prev  Next »
16: 2015-10-24 (土) 22:10:35 osinko ソース 現: 2015-11-04 (水) 22:28:03 osinko ソース
Line 34: Line 34:
補足: 補足:
\(a= \lim _{ n\rightarrow \infty  }{ 1-{ \left( \frac { 1 }{ { 10 } }  \right)  }^{ n } } \)も同様になる&br;\(a= \lim _{ n\rightarrow \infty  }{ { \left( 1-\frac { 1 }{ { 10 } }  \right)  }^{ n } } \)等とすると式の意味が全く変わってくるので注意(この場合は二項定理が必要になってきて計算結果も大きく変わる) \(a= \lim _{ n\rightarrow \infty  }{ 1-{ \left( \frac { 1 }{ { 10 } }  \right)  }^{ n } } \)も同様になる&br;\(a= \lim _{ n\rightarrow \infty  }{ { \left( 1-\frac { 1 }{ { 10 } }  \right)  }^{ n } } \)等とすると式の意味が全く変わってくるので注意(この場合は二項定理が必要になってきて計算結果も大きく変わる)
- 
-今度は数直線上の\(\frac { 1 }{ 3 } \)を基準にふたつの有理数の集合に切断してみると(この解釈は間違っている可能性がある???) 
- 
-\(\displaystyle 切断\left( \quad A:=\left\{ a\in { { Q } }|a<\frac { 1 }{ 3 }  \right\} \quad ,\quad B:=\left\{ b\in { { Q } }|b\ge \frac { 1 }{ 3 }  \right\} \quad  \right) \quad \Rightarrow \quad 切断\left( \quad \lim _{ n\rightarrow \infty  }{ \frac { 1 }{ 3 } -\frac { 1 }{ { 10 }^{ n } }  } \quad ,\quad \frac { 1 }{ 3 } \quad  \right) \quad \Rightarrow \quad 切断\left( \quad 0.\dot { 3 }2 \quad ,\quad 0.\dot { 3 } \quad  \right) \) 
このように切断により集合\(B\)に必ず最小値の端を持つ事になり集合\(A\)と重なって数としての穴は開かないようになる。つまり「実数の連続性」はこれによって得られる このように切断により集合\(B\)に必ず最小値の端を持つ事になり集合\(A\)と重なって数としての穴は開かないようになる。つまり「実数の連続性」はこれによって得られる
Line 44: Line 40:
\(1\div 9=0.11111...=0.\dot { 1 } \\ 2\div 9=0.22222...=0.\dot { 2 } \\ 3\div 9=0.33333...=0.\dot { 3 } \\ \quad \quad \quad \vdots \\ 8\div 9=0.88888...=0.\dot { 8 } \\ 9\div 9=0.99999...=0.\dot { 9 } =1\) \(1\div 9=0.11111...=0.\dot { 1 } \\ 2\div 9=0.22222...=0.\dot { 2 } \\ 3\div 9=0.33333...=0.\dot { 3 } \\ \quad \quad \quad \vdots \\ 8\div 9=0.88888...=0.\dot { 8 } \\ 9\div 9=0.99999...=0.\dot { 9 } =1\)
-\(切断(A,B)\)を利用すると「実数 = 切断( 実数表現 , 有理数表現 )」が得られる。\(A\)も\(B\)も有限の紙の上で書ける表現となる +有理数の境目を使って\(切断(A,B)\)を利用すると「切断( 連続として重なっている隣の点の実数表現 , ジャストの有理数表現 )」が得られる。\(A\)も\(B\)も有限の紙の上で書ける表現となる。反対に紙に書けない無理数のような無限に続く実数の値は一端、有理数の近似値にして近似の実数を得るしかない
-反対に紙に書けない無理数のような無限に続く実数の値は一端、有理数の近似値にして近似の実数を得るしかない+
**その他の証明 [#g5a9868f] **その他の証明 [#g5a9868f]
« Prev  Next »


トップ   差分 バックアップ 複製 名前変更 リロード   ページ新規作成 全ページ一覧 単語検索 最新ページの一覧   ヘルプ   最新ページのRSS 1.0 最新ページのRSS 2.0 最新ページのRSS Atom